0% completed
Topological Sort
is used to find a linear ordering of elements that have dependencies on each other. For example, if event ‘B’ is dependent on event ‘A’, ‘A’ comes before ‘B’ in topological ordering.
This pattern defines an easy way to understand the technique for performing topological sorting of a set of elements and then solves a few problems using it.
Let’s see this pattern in action.
Problem Statement
Topological Sort of a directed graph (a graph with unidirectional edges) is a linear ordering of its vertices such that for every directed edge (U, V) from vertex U to vertex V, U comes before V in the ordering.
Given a directed graph, find the topological ordering of its vertices. If the graph is cyclic, return an empty array.
Example 1
Input: Vertices=7, Edges=[6, 4], [6, 2], [5, 3], [5, 4], [3, 0], [3, 1], [3, 2], [4, 1]
Output: Following are all valid topological sorts for the given graph:
1) 5, 6, 3, 4, 0, 1, 2
2) 6, 5, 3, 4, 0, 1, 2
3) 5, 6, 4, 3, 0, 2, 1
4) 6, 5, 4, 3, 0, 1, 2
5) 5, 6, 3, 4, 0, 2, 1
6) 5, 6, 3, 4, 1, 2, 0
There are other valid topological ordering of the graph too.
Example 2
Input: Vertices=4, Edges=[3, 2], [3, 0], [2, 0], [2, 1]
Output: Following are the two valid topological sorts for the given graph:
1) 3, 2, 0, 1
2) 3, 2, 1, 0
Example 3
Input: Vertices=5, Edges=[4, 2], [4, 3], [2, 0], [2, 1], [3, 1]
Output: Following are all valid topological sorts for the given graph:
1) 4, 2, 3, 0, 1
2) 4, 3, 2, 0, 1
3) 4, 3, 2, 1, 0
4) 4, 2, 3, 1, 0
5) 4, 2, 0, 3, 1
Try it yourself
Try solving this question here:
.....
.....
.....
Table of Contents
Contents are not accessible
Contents are not accessible
Contents are not accessible
Contents are not accessible
Contents are not accessible