Back to course home
0% completed
Vote For New Content
Path Sum III (medium)
Problem Statement
Given the root
of a binary tree and an integer targetSum
, return the count
of number of paths in the tree where the sum of the values along the path equals targetSum
.
A path can start
and end
at any node, but it must go downward, meaning it can only travel from parent nodes to child nodes.`
Examples
Example 1:
- Input: targetSum =
10
, root =[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
1
/ \
2 3
/ \ / \
4 5 6 7
/ \ /
8 9 10
- Expected Output:
3
- Justification: The paths that sum to 10 are:
- 1 → 3 → 6
- 3 → 7
- 10
Example 2:
- Input: targetSum =
12
, root =[5, 4, 6, 3, null, 7, 8, null, null, 2, 1]
5
/ \
4 6
/ / \
3 7 8
/ \
2 1
- Expected Output:
1
- Justification: The paths that sum to 12 are:
- 5 → 4 → 3
Example 3:
- Input: targetSum =
18
, root =[10, 5, -3, 3, 2, null, 11, null, null, 1]
10
/ \
5 -3
/ \ \
3 2 11
/
1
- Expected Output:
3
- Justification: The path that sums to 18 is:
- 10 → 5 → 3
- 10 → -3 → 11
- 10 → 5 → 2 → 1
Constraints:
- The number of nodes in the tree is in the range
[0, 1000]
. - -10<sup>9</sup> <= Node.val <= 10<sup>9</sup>
- -1000 <= targetSum <= 1000
Try it yourself
Try solving this question here:
Python3
Python3
. . . .
.....
.....
.....
Like the course? Get enrolled and start learning!
On this page
Problem Statement
Examples
Try it yourself